USP Standards to Support Host Cell Protein Analysis by Mass Spectrometry

Niomi Peckham, Principal Scientist

BEBPA HCP, May 18, 2022

Outline

- ▶ HCP Documentary Standards
 - **-** GC <1132>
 - LC-MS Chapter
- HCP Physical Standards
 - Peptides
 - Proteins
 - Next Steps

Documentary Standards

Host Cell Protein in USP-NF

- Individual monographs
 - e.g., INSULIN LISPRO

- **HOST CELL PROTEIN:** The residual host cell protein content is NMT 10 ng/mg, determined by a validated method or demonstrated by a validated process.
- ▶ USP-NF in <1132> Residual Host Cell Protein Measurement in Biopharmaceuticals
 - Official in USP 41-NF 36
 - Contains Immunoassay Methods, Reagents, Method Development, Qualification, and Validation
 - Includes Limited Discussion on Supporting / Orthogonal Technologies
 - Electrophoresis Methods (1D and 2D SDS-PAGE and CE-SDS), Western Blot, Chromatographic Methods, and Mass spectrometry Methods
 - No associated Reference Standards
- Proposed >1000 chapter in development by Host Cell Protein Expert Panel
 - Working Title: Identification and Quantitation of HCP Impurities in Biological Products using Mass
 Spectrometry
 - Contain general guidance and best practices
 - Submission to PF expected in early 2023

HCP Expert Panel Membership

- Expert Volunteers:
 - Ned Mozier, Chair, Pfizer, US
 - Severine Clavier, Sanofi, France
 - Annick Gervais, UCB, Belgium
 - Suli Liu, Biogen, US
 - Jingjie Mo, Johnson & Johnson, US
 - Rosalynn Molden, Just-Evotec, US
 - Veronika Reisinger, Novartis/Sandoz, Austria
 - Kevin Van Cott, University of Nebraska –
 Lincoln and Haemtech, US
 - Donald Earl Walker, Nektar Therapeutics, US

- Fengqiang Wang, Merck, US
- Stefanie Wohlrab, Roche Diagnostics, Austria
- Ying Zhang, Pfizer, US
- Yiwei Zhao, Alkermes, US
- Government Liaisons:
 - 2 from FDA
- USP Scientific Liaisons:
 - Niomi Peckham
 - Ying Han

Vision of the Expert Panel

- Provide guidance on how to initiate measurement of HCP using MS and how to ensure an organization's characterization and development strategy is comprehensive.
 - Our goal is to provide a consistent guide for use across the biopharmaceutical industry
- ▶ The goals of the chapter are:
 - Contain general guidance and best practices
 - Principles of techniques, but not the detail of a Standard Operating Procedure
 - Establish terminology
 - Avoid information that can become outdated rapidly
 - Include reference to emerging modalities
 - Technology sections will provide flexibility for instrumentation
- Sections should serve as high-level guides and provide minimum requirements

USP General Chapter Development Process

- 1 Expert Committee members are selected for a 5-year term. They are not representative of companies.
- 2 Expert Panel members are selected for a specific task. They may represent their own interest. They are advisors of the Expert Committees on one specific topic

FAQs for HCP Analysis by Mass Spectrometry

- What parameters impact qualification and quantification results of HCP using LC-MS/MS?
 - Sample Preparation, Standards, Acquisition Methods and Data Processing
- What are the main applications of LC/MS-MS for HCP analysis?
 - Process Clearance, Identify HCPs in DS, Characterize ELISA Reagents, Facilitate Risk Assessment
- At different stages of development, what workflows and sample types are appropriate?
- What do terms like Identification, Qualitative, Quantitative, Semi-Quantitative, Relative Quantitation and Absolute Quantitation practically mean and how do they differ?
- How should HCP content be reported and what units are appropriate?
- How should I compare HCP data from LC/MS-MS to that from ELISA?

Use of Standards in LC-MS/MS

The HCP EP asked members to rank how often their organization used these approaches for standards in analysis of HCP by LC-MS/MS.

Development of HCP Reference Standards

Proposed Standards

- Focused on individual proteins or peptides corresponding to HCPs of concern
 - HCPs that have been reported to impact patients or product
 - High abundance HCPs commonly detected in product and/or late process steps
 - Verified against published benchmarking studies
- Support identification and quantitation
 - Mass spectrometry is first priority
 - Potentially support immunoassays for individual HCPs

Reference Standard Format: Protein vs Peptide

PEPTIDE HCP STANDARDS

- Advantages
 - Easier and faster to produce
 - Easy to generate in stable isotope labeled format
- Disadvantages
 - Limits application to MS
 - Does not account for losses during sample preparation
 - Requires multiple peptides for each protein

PROTEIN HCP STANDARDS

- Advantages
 - More accurate quantitation since standard undergoes same sample preparation
 - Could support wider range of applications
- Disadvantages
 - Limited sources of purified CHO proteins
 - Limited availability of HCP clones

Peptide Standards in Development

- First group (Production)
 - CHO Host Cell Proteins
 - 3 target proteins
 - 3 peptides per target protein under evaluation for use in identification and quantitation applications
- Second group (Pilot)
 - 20 peptides under evaluation
 - 7 additional target CHO proteins
 - final selections to be made after proof-ofconcept functional testing

- Peptide specifications
 - stable isotope labeled Lys or Arg
 - high purity (>95%)
 - minimum of 2 peptides per target
 - sequences selected based on publications and feedback from stakeholders
- Form Factor
 - dissolved peptide (liquid)
 - stored frozen ≤-65°C
- Formulation
 - USP Solubility and Stability studies to confirm solvent

Peptide Analytics

- Production Scale materials
 - Characterization of solid by vendor
 - Peptide content by AAA
 - Purity by HPLC-UV (> 95%)
 - Identity by LC-UV-HRMS
 - Sequence Verification by MS/MS
 - Residual Water (Karl Fischer)
 - Inorganic Content (Anions and Cations)
- Pilot Scale materials
 - Characterization by vendor
 - Purity by HPLC-UV (>95%)

Proof of Concept Study

Objectives

- Evaluate utility of peptides for absolute quantitation
 - Spike samples with peptides and compare to external standards
- Confirmation of use for Production
 Scale
 - Identity and Quantitation
- Proof of Concept for Pilot Scale
 - Selection of final peptides

- Evaluate detectability and linearity of peptides in relevant CHO matrices
 - CHO HCCF (null and producing)
 - Protein A eluate
 - IEX eluate
- Standard (denaturing) and native digests
 - Native digests on Protein A and IEX eluates
- Multiple workflows
 - DDA
 - SWATH

Proof of Concept Study

- Preliminary data
 - Standard (denaturing) and Native digests, DDA workflow
 - Are peptides detected?

	Peptide	HCCF, Null Cells Lot A	HCCF, Null Cells Lot B	HCCF, Null Cells Lot C		Protein A	IEX	Protein A	IEX
Digest		Standard	Standard	Standard	Standard	Standard	Standard	Native	Native
Production Target 1	1	+	+	+	+	+	+	+	+
	2				+			+	+
	3			+	+			+	+
Production Target 3	4	+	+	+	+	+		+	
	5	+	+	+	+	+		+	
	6	+	+	+	+	+		+	
Pilot Target 4	10	+	+	+	+	+	+	+	+
	4 12	+	+	+	+	+	+		
	13	+	+	+	+	+		+	+
Pilot Target 1	27								
	10 28	+			+			+	
	29								

Proposed Collaborative Study & Round Robin

- Collaborative Study will focus on peptide analytics
 - USP and external laboratories
 - Vialed final product (liquid)
 - AAA for concentration
 - HPLC-UV HRMS for purity
 - Certificate will include physicochemical analysis only
- Proposed Round Robin
 - Can occur in parallel with Collaborative Study
 - Functional testing only
 - Can include a pre-defined method and/or participant methods

HCP Standards in Development

- ▶ Recombinant CHO Phospholipase B-like 2 protein (PLBL2) [HIS]
 - C-terminal 6-HIS tagged
 - Expressed in CHO
 - Formulated in 1X PBS at 2 mg/mL
 - Store at ≤ -65°C
 - Donated Material
 - Thank you!

PLBL-2 Development

Characterization

- Peptide Map by RP-HPLC-MS
 - > 75% sequence coverage
- ▶ SEC-HPLC
 - > 90% main peak
- ▶ SDS-PAGE (reducing)
 - Major bands at ~ 66 kDa, 42 kDa, and 30 kDa
- Anti-HIS Western Blot
 - Confirmed HIS tag
- Functional Testing by LC-MS/MS
 - Standard digest (denaturing), DDA
 - Work in progress

Next Steps

- Collaborative Study will focus on protein analytics
 - Concentration by UV₂₈₀
 - SEC-HPLC
 - SDS-PAGE
 - Certificate will include physicochemical analysis only
- Round Robin
 - Can occur in parallel with Collaborative Study
 - Functional testing only
 - Quantitative application
 - Can include a pre-defined method and/or participant methods

Summary

- USP is developing new standards to support HCP analysis by mass spectrometry
 - New Expert Panel is drafting a general chapter (>1000) on best practices for MS-based HCP analysis
 - Physical standards are under development for individual high-risk HCPs
 - Stable isotope labeled peptides
 - 9 peptides to 3 protein targets
 - Physicochemical characterization underway
 - Proof of Concept study underway
 - Collaborative Testing and Round Robin in planning stage
 - Purified proteins
 - PLBL-2
 - Physicochemical characterization and functional testing underway
 - Collaborative Testing and Round Robin in planning stage